Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Electr Eng ; 95: 107411, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1404729

ABSTRACT

Coronavirus is an infectious life-threatening disease and is mainly transmitted through infected person coughs, sneezes, or exhales. This disease is a global challenge that demands advanced solutions to address multiple dimensions of this pandemic for health and wellbeing.  Different types of medical and technological-based solutions have been proposed to control and treat COVID-19. Machine learning is one of the technologies used in Magnetic Resonance Imaging (MRI) classification whereas nature-inspired algorithms are also adopted for image optimization. In this paper, we combined the machine learning and nature-inspired algorithm for brain MRI images of COVID-19 patients namely Machine Learning and Nature Inspired Model for Coronavirus (MLNI-COVID-19). This model improves the MRI image classification and optimization for better diagnosis. This model will improve the overall performance especially the area of brain images that is neglected due to the unavailability of the dataset. COVID-19 has a serious impact on the patient brain. The proposed model will help to improve the diagnosis process for better medical decisions and performance. The proposed model is evaluated with existing algorithms and achieved better performance in terms of sensitivity, specificity, and accuracy.

2.
Multimed Syst ; 28(4): 1439-1448, 2022.
Article in English | MEDLINE | ID: covidwho-1397011

ABSTRACT

Coronavirus is one of the serious threat and challenge for existing healthcare systems. Several prevention methods and precautions have been proposed by medical specialists to treat the virus and secure infected patients. Deep learning methods have been adopted for disease detection, especially for medical image classification. In this paper, we proposed a deep learning-based medical image classification for COVID-19 patients namely deep learning model for coronavirus (DLM-COVID-19). The proposed model improves the medical image classification and optimization for better disease diagnosis. This paper also proposes a mobile application for COVID-19 patient detection using a self-assessment test combined with medical expertise and diagnose and prevent the virus using the online system. The proposed deep learning model is evaluated with existing algorithms where it shows better performance in terms of sensitivity, specificity, and accuracy. Whereas the proposed application also helps to overcome the virus risk and spread.

3.
Healthcare (Basel) ; 9(6)2021 Jun 10.
Article in English | MEDLINE | ID: covidwho-1290738

ABSTRACT

COVID-19 has made eHealth an imperative. The pandemic has been a true catalyst for remote eHealth solutions such as teleHealth. Telehealth facilitates care, diagnoses, and treatment remotely, making them more efficient, accessible, and economical. However, they have a centralized identity management system that restricts the interoperability of patient and healthcare provider identification. Thus, creating silos of users that are unable to authenticate themselves beyond their eHealth application's domain. Furthermore, the consumers of remote eHealth applications are forced to trust their service providers completely. They cannot check whether their eHealth service providers adhere to the regulations to ensure the security and privacy of their identity information. Therefore, we present a blockchain-based decentralized identity management system that allows patients and healthcare providers to identify and authenticate themselves transparently and securely across different eHealth domains. Patients and healthcare providers are uniquely identified by their health identifiers (healthIDs). The identity attributes are attested by a healthcare regulator, indexed on the blockchain, and stored by the identity owner. We implemented smart contracts on an Ethereum consortium blockchain to facilities identification and authentication procedures. We further analyze the performance using different metrics, including transaction gas cost, transaction per second, number of blocks lost, and block propagation time. Parameters including block-time, gas-limit, and sealers are adjusted to achieve the optimal performance of our consortium blockchain.

SELECTION OF CITATIONS
SEARCH DETAIL